A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices
نویسنده
چکیده
Recently Johansson (21) and Johnstone (16) proved that the distribution of the (properly rescaled) largest principal component of the complex (real) Wishart matrixXgX(X X) converges to theTracy–Widom lawas n, p (the dimensions ofX) tend to . in some ratio n/pQ c > 0. We extend these results in two directions. First of all, we prove that the joint distribution of the first, second, third, etc. eigenvalues of a Wishart matrix converges (after a proper rescaling) to the Tracy–Widom distribution. Second of all, we explain how the combinatorial machinery developed for Wigner random matrices in refs. 27, 38, and 39 allows to extend the results by Johansson and Johnstone to the case of X with nonGaussian entries, provided n−p=O(p).We also prove that lmax [ (n+p) +O(p log(p)) (a.e.) for general c > 0.
منابع مشابه
A pr 2 00 9 A universality result for the smallest eigenvalues of certain sample covariance matrices
After proper rescaling and under some technical assumptions, the smallest eigenvalue of a sample covariance matrix with aspect ratio bounded away from 1 converges to the Tracy–Widom distribution. This complements the results on the largest eigenvalue, due to Soshnikov and Péché.
متن کاملA universality result for the smallest eigenvalues of certain sample covariance matrices Ohad
After proper rescaling and under some technical assumptions, the smallest eigenvalue of a sample covariance matrix with aspect ratio bounded away from 1 converges to the Tracy–Widom distribution. This complements the results on the largest eigenvalue, due to Soshnikov and Péché. PRELIMINARY VERSION
متن کاملA universality result for the smallest eigenvalues of certain sample covariance matrices
After proper rescaling and under some technical assumptions, the smallest eigenvalue of a sample covariance matrix with aspect ratio bounded away from 1 converges to the Tracy–Widom distribution. This complements the results on the largest eigenvalue, due to Soshnikov and Péché.
متن کاملUniversality of Local Eigenvalue Statistics for Some Sample Covariance Matrices
Abstract We consider random, complex sample covariance matrices 1 N X ∗X , where X is a p×N random matrix with i.i.d. entries of distribution μ. It has been conjectured that both the distribution of the distance between nearest neighbor eigenvalues in the bulk and that of the smallest eigenvalues become, in the limit N → ∞, p N → 1, the same as that identified for a complex Gaussian distributio...
متن کاملOn convergence of sample and population Hilbertian functional principal components
In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002